
A avantor[™]

Avantor® ACE® step-by-step HILIC method development protocol

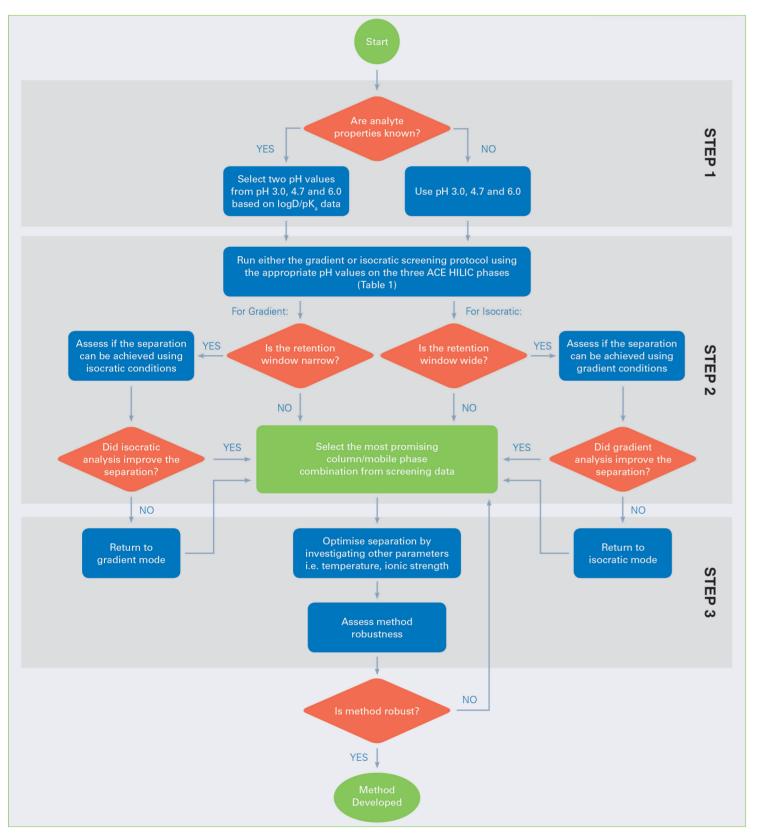
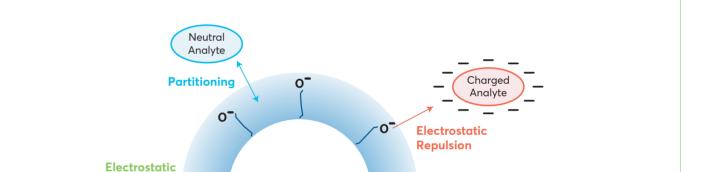

HILIC stationary phase and mobile phase pH are two of the most powerful parameters for altering HILIC selectivity. Assessing these two critical parameters is therefore the optimum starting point for method development. The recommended approach uses stationary and mobile phase screening data to identify a column/ mobile phase combination that is most promising for the sample. Once selected, the method can then be fine-tuned using other parameters such as buffer strength and temperature.

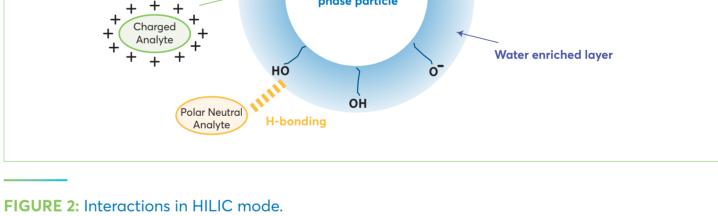
Figure 1 shows a flow diagram summarising the following step-by-step HILIC method development protocol.

Step 1: If analyte properties are known, select two appropriate mobile phase pH's for screening. If unknown, use pH 3.0, 4.7 and 6.0 (these pH values are designed to maximise selectivity differences).

Step 3: The effects of other parameters such as temperature and buffer concentration can be used to fine-tune the method. Once development is complete, the method robustness can be assessed as required.



WHAT IS HILIC?

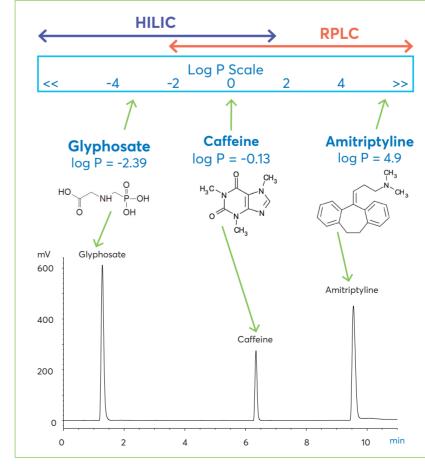

- Hydrophilic Interaction Liquid Chromatography (HILIC) was first described by Alpert*
- HILIC is ideal for the separation and retention of polar species including polar neutral and polar ionised analytes
- HILIC separations typically utilise a polar stationary phase with high organic solvent containing mobile phases
- Mechanistically HILIC is complex (Figure 2) and provides multiple modes of interaction between the analyte, stationary phase, eluent and water enriched layer at the stationary phase particleeluent interface**

* A. J. Alpert, J. Chromatogr., 499 (1990) 177.

** See the FREE ACE guide to reproducible HILIC method development for more information – order your copy now.

OH

Stationary


phase particle

WHEN SHOULD YOU CONSIDER HILIC?

Attraction

07

- HILIC provides the retention and separation of hydrophilic or polar to very polar analytes not well retained in RPLC
- Hydrophilic or polar to very polar analytes have log P values (measure of lipophilicity) of around zero or less
- Generally, polar analytes are suitable for HILIC if they elute before caffeine in gradient RPLC (Figure 3)

Column	CE Excel C18, 100 x 3.0, 2 μm	
Cat. No.	EXL -101-1003U	
Mobile phase	= 10 mM ammonium formate, H 3.0 (aq) = 10 mM ammonium formate, H 3.0 in 90:10 v/v MeCN:H ₂ O	
Gradient	5 - 100 %B in 10 min	
Detection	_SD	
Flow rate	0.4 ml/min	
Temperature	30 °C	
Injection	10 µl	

Analysed using VWR-Hitachi Chromaster with VWR ELSD90.

Figure reproduced with permission. Adapted from work first published in Chromatography Today, Volume 8, Issue 4, November/December 2015.

FIGURE 3: Analyte suitability for HILIC from gradient RPLC and from Log P.

FIGURE 1: HILIC method development flow chart.

Avantor[®] ACE[®]

Column	ACE HILIC-A,	ACE HILIC-A, ACE HILIC-B and ACE HILIC-N, 150 x 4.6, 5 µm		
Isocratic screening		10 mM ammonium formate in MeCN/H ₂ O (9:1 v/v) ammonium formate at pH 3.0, 4.7 or 6.0		
Gradient screening	Line B: 10 mN		ormate in MeCN/H ₂ O (94:6 v/v) ormate in MeCN/H ₂ O (50:50 v/v) 3.0, 4.7 or 6.0	
	Time (min)	%В		
	0	0		
	15	100		
	20	100		
	21	0		
	41	0		
Flow rate	1.5 ml/min			
Temperature	25 °C	25 °C		
Detection	Dependent o	Dependent on sample		

TABLE 1: Recommended isocratic and gradient HILIC screening conditions.